Extensions 1→N→G→Q→1 with N=C2 and Q=C22×He3⋊C2

Direct product G=N×Q with N=C2 and Q=C22×He3⋊C2
dρLabelID
C23×He3⋊C272C2^3xHe3:C2432,561


Non-split extensions G=N.Q with N=C2 and Q=C22×He3⋊C2
extensionφ:Q→Aut NdρLabelID
C2.1(C22×He3⋊C2) = C2×C4×He3⋊C2central extension (φ=1)72C2.1(C2^2xHe3:C2)432,385
C2.2(C22×He3⋊C2) = C22×He33C4central extension (φ=1)144C2.2(C2^2xHe3:C2)432,398
C2.3(C22×He3⋊C2) = C2×He34Q8central stem extension (φ=1)144C2.3(C2^2xHe3:C2)432,384
C2.4(C22×He3⋊C2) = C2×He35D4central stem extension (φ=1)72C2.4(C2^2xHe3:C2)432,386
C2.5(C22×He3⋊C2) = C62.47D6central stem extension (φ=1)726C2.5(C2^2xHe3:C2)432,387
C2.6(C22×He3⋊C2) = D4×He3⋊C2central stem extension (φ=1)366C2.6(C2^2xHe3:C2)432,390
C2.7(C22×He3⋊C2) = C62.16D6central stem extension (φ=1)726C2.7(C2^2xHe3:C2)432,391
C2.8(C22×He3⋊C2) = Q8×He3⋊C2central stem extension (φ=1)726C2.8(C2^2xHe3:C2)432,394
C2.9(C22×He3⋊C2) = He35D4⋊C2central stem extension (φ=1)726C2.9(C2^2xHe3:C2)432,395
C2.10(C22×He3⋊C2) = C2×He37D4central stem extension (φ=1)72C2.10(C2^2xHe3:C2)432,399

׿
×
𝔽